
Previous JEE question 5

The qualitative sketches I, II and III given below show the variation of surface tension with molar concentration of three different aqueous solutions of KCl, CH₃OH and CH₃(CH₂)₁₁OSO₃⁻ Na⁺ at room temperature. The correct assignment of the sketches is (*JEE Adv. 2016*)

- (a) I: KCl II: CH₃OH III: CH₃(CH₂)₁₁OSO₃-Na⁺
- (b) I: CH₃(CH₂)₁₁OSO₃-Na⁺ II: CH₃OH III: KCl
- (c) I:KCl II:CH₃(CH₂)₁₁OSO₃-Na⁺ III:CH₃OH
- (d) I: CH₃OH II: KCl III: CH₃(CH₂)₁₁OSO₃⁻Na⁺

(d)

- A solution of CH₃OH and water shows positive deviation from Raoult's law, it means by adding CH₃OH intermolecular force of attraction decreases and hence surface tension decreases.
- By adding KCl in water, intermolecular force of attraction bit increases, so surface tension increases by small value.
- By adding surfactant like CH₃(CH₂)₁₁OSO₃⁻Na⁺, surface tension decreases rapidly and after forming micelle it slightly increases.